🥇 Matura Maj 2012 Zad 28

http://matfiz24.plhttp://matfiz24.plZadanieUzasadnij, że jeżeli liczba całkowita nie dzieli się przez 3, to jej kwadrat przy dzieleniu przez 3 daje resztę 1. http://akademia-matematyki.edu.pl/ Zadanie 28 Matura CKE sierpień 2010 nowa wersja http://piotrciupak.pl/ Pełne lekcje: http://mrciupi.pl/VIDEOKURS: http://m Matura z informatykihttp://maturainformatyka.pl/Link do zadaniahttp://maturainformatyka.pl/arkuszkalkulacyjny.php?url=trojkat-pascalaMatura z informatyki 201 http://matfiz24.plZadanie brzmi: Pole kwadratu wpisanego w okrąg o promieniu 5 jest równe? No właśnie ile? W nagraniu odpowiedź do zadania maturalnego. Trójkąty prostokątne równoramienne ABC i CDE są położone tak, jak na poniższym rysunku (w obu trójkątach kąt przy wierzchołku C jest prosty). Wykaż, że AD=BE Matura 2012 , język angielski, poziom rozszerzony - klucz odpowiedzi. ZAD 2 2.1. the moment he finishes 2.2. from Simon, all the students 2.3 get away with 2.4 to avoid speaking http://akademia-matematyki.edu.pl/ Zadanie 18 http://piotrciupak.pl/ Matura z maja 2012 CKE nowa wersja Pełne lekcje: http://mrciupi.pl/VIDEOKURS: http://mr http://matfiz24.plZadanie 28Dany jest kwadrat ABCD. Przekątne AC i BD przecinają się w punkcie E. Punkty K i M są środkami odcinków - odpowiednio - AE i EC. Matura z matematyki (poziom podstawowy) - Maj 2012. Zadanie 1. (1pkt) Cenę nart obniżono o 20%, a po miesiącu nową cenę obniżono o dalsze 30%. W wyniku obu obniżek cena nart zmniejszyła się o: A. 44%. B. 50%. Źródło: Egzamin maturalny z biologii. Poziom rozszerzony, maj 2012 . Zad. 41 (3p.) Parzydełkowce są wodnymi dwuwarstwowymi zwierzętami tkankowymi. Dorosłe postaci (polip i meduza) mają zróżnicowane rozmiary – od rozmiarów kilkumilimetrowych do kilkumetrowych. Matura poprawkowa 2012 z matematyki (sierpień 2012), poziom podstawowy - treści i rozwiązania zadań. - pełne rozwiązania wszystkich zadań, treści zadań, Matura, 46587 korepetycje z matematyki i fizyki: http://licz24.pl/ Odwiedź moją stronę i zobacz szczegółowe rozwiązania wszystkich zadań z ostatnich matur. info@licz24.pl BiYul. Przejdź do treściAkademia Matematyki Piotra CiupakaMatematyka dla licealistów i maturzystów Strona głównaDlaczego warto?O mnieOpinieKontaktChce dołączyć!Opublikowane w przez Matura maj 2010 zadanie 27 Rozwiąż równanie x3−7×2−4x+28=0. Rozwiąż równanie x3−7×2−4x+28= dostęp do Akademii! Dodaj komentarz Musisz się zalogować, aby móc dodać wpisuPoprzedni wpis Matura maj 2010 zadanie 28 Trójkąty prostokątne równoramienne ABC i CDE są położone tak, jak na poniższym rysunku (w obu trójkątach kąt przy wierzchołku C jest prosty). Wykaż, że |AD|=|BE|.Następny wpis Matura maj 2010 zadanie 26 Rozwiąż nierówność x2−x−2≤0. Majowa matura z matematyki 2012 na poziomie podstawowym nie była trudna. Zobacz arkusz i odpowiedzi do zadań maturalnych online, które są idealnym materiałem do powtórki przed tegoroczną maturą z matematyki. Na prawdę warto! Arkusz i odpowiedzi Centralnej Komisji Edukacyjnej Matura z matematyki 2012 – Maj Poziom Podstawowy – Arkusz CKE Matura z matematyki 2012 – Maj Poziom Podstawowy – Odpowiedzi CKE Mając podany arkusz Centralnej Komisji Edukacyjnej wraz z odpowiedziami możesz śmiało rozpocząć dokładną analizę zadań. Jeżeli jesteś tegorocznym maturzystą będzie to dla Ciebie fajny trening przed maturą. Matura z matematyki 2012 – Zadania i odpowiedzi online Zadanie 1. (1 pkt). Cenę nart obniżono o 20%, a po miesiącu nową cenę obniżono o dalsze 30%. W wyniku obu obniżek cena nart zmniejszyła się o Zobacz na stronie Zobacz na YouTube Zadanie 2. (1 pkt). Liczba \(\sqrt[3]{{{{\left( { – 8} \right)}^{ – 1}}}} \cdot {16^{\frac{3}{4}}} \) jest równa Zobacz na stronie Zobacz na YouTube Zadanie 3. (1 pkt). Liczba \({\left( {3 – \sqrt 2 } \right)^2} + 4\left( {2 – \sqrt 2 } \right)\) jest równa \[A.\;19 – 10\sqrt 2\]\[B.\;17 – 4\sqrt 2\]\[C.\;15 + 14\sqrt 2\]\[ + 6\sqrt 2 \] Zobacz na stronie Zobacz na YouTube Zadanie 4. (1 pkt). Iloczyn \(2 \cdot {\log _{\frac{1}{3}}}9\) jest równy Treść dostępna po opłaceniu abonamentu Ucz się matematyki już od 25 zł. Instrukcja premium Uzyskaj dostęp do całej strony Wesprzyj rozwój filmów matematycznych Zaloguj się lub Wykup Sprawdź Wykup Anuluj Pełny dostęp do zawartości na 15 dni za dostęp do zawartości na 30 dni za dostęp do zawartości na 45 dni za zł. Anuluj Zadanie 5. (1 pkt). Wskaż liczbę, która spełnia równanie \(\left| {3x + 1} \right| = 4x\) A. x=-1B. x=1C. x=2D. x=-2 Treść dostępna po opłaceniu abonamentu. Zadanie 6. (1 pkt). Liczby \({x_1},{x_2}\) są różnymi rozwiązaniami równania \(2{x^2} + 3x – 7 = 0\). Suma \({x_1} + {x_2}\) jest równa \[A. – \frac{7}{2}\]\[B. – \frac{7}{4}\]\[C. – \frac{3}{2}\]\[D. – \frac{3}{4}\] Treść dostępna po opłaceniu abonamentu. Zadanie 7. (1 pkt). Miejscami zerowymi funkcji kwadratowej \(y = – 3\left( {x – 7} \right)\left( {x + 2} \right)\) A. x=7, x=-2B. x=-7, x=-2C. x=7, x=2D. x=-7, x=2 Treść dostępna po opłaceniu abonamentu. Zadanie 8.(1 pkt). Funkcja liniowa f jest określona wzorem f(x) = ax + 6 , gdzie a > 0 . Wówczas spełniony jest warunek A. f(1) = 1B. f(2) = 2C. f(3) = 3D. f(4) = 4 Treść dostępna po opłaceniu abonamentu. Zadanie 9. (1 pkt). Wskaż wykres funkcji, która w przedziale ma dokładnie jedno miejsce zerowe. Treść dostępna po opłaceniu abonamentu. Zadanie 10. (1 pkt). Liczba tg30° – sin 30° jest równa \[A.\sqrt 3 – 1\]\[B. – \frac{{\sqrt 3 }}{6}\]\[C.\frac{{\sqrt 3 – 1}}{6}\]\[D.\frac{{2\sqrt 3 – 3}}{6}\] Treść dostępna po opłaceniu abonamentu. Zadanie 11. (1 pkt). W trójkącie prostokątnym ABC odcinek AB jest przeciwprostokątną i |AB|=13 oraz |BC|=12 . Wówczas sinus kąta ABC jest równy \[A.\frac{{12}}{{13}}\]\[B.\frac{5}{{13}}\]\[C.\frac{5}{{12}}\]\[D.\frac{{13}}{{12}}\] Treść dostępna po opłaceniu abonamentu. Zadanie 12. (1 pkt). W trójkącie równoramiennym ABC dane są |AC| = |BC| = 5 oraz wysokość |CD| = 2 . Podstawa AB tego trójkąta ma długość \[ {21}\]\[ {29}\]\[ Treść dostępna po opłaceniu abonamentu. Zadanie 13. (1 pkt). W trójkącie prostokątnym dwa dłuższe boki mają długości 5 i 7. Obwód tego trójkąta jest równy \[ 6\]\[ 6\]\[ + 4\sqrt 6\]\[ + 2\sqrt 6\] Treść dostępna po opłaceniu abonamentu. Zadanie 14. (1 pkt). Odcinki AB i CD są równoległe i |AB|=5 , |AC|=2 , |CD|=7 (zobacz rysunek). Długość odcinka AE jest równa \[A.\frac{{10}}{7}\]\[B.\frac{{14}}{5}\]\[ Treść dostępna po opłaceniu abonamentu. Zadanie 15. (1 pkt). Pole kwadratu wpisanego w okrąg o promieniu 5 jest równe Treść dostępna po opłaceniu abonamentu. Zadanie 16. (1 pkt). Punkty A, B, C, D dzielą okrąg na 4 równe łuki. Miara zaznaczonego na rysunku kąta wpisanego ACD jest równa Treść dostępna po opłaceniu abonamentu. Zadanie 17. (1 pkt). Miary kątów czworokąta tworzą ciąg arytmetyczny o różnicy 20°. Najmniejszy kąt tego czworokąta ma miarę A. 40°B. 50°C. 60° D. 70° Treść dostępna po opłaceniu abonamentu. Zadanie 18. (1 pkt). Dany jest ciąg \(\left( {{a_n}} \right)\) określony wzorem \({a_n} = {\left( { – 1} \right)^{\;n}} \cdot \frac{{2 – n}}{{{n^2}}}\) dla n≥1. Wówczas wyraz \({a_5}\) tego ciągu jest równy \[A. – \frac{3}{{25}}\]\[B.\frac{3}{{25}}\]\[C. – \frac{7}{{25}}\]\[D.\frac{7}{{25}}\] Treść dostępna po opłaceniu abonamentu. Zadanie 19. (1 pkt). Pole powierzchni jednej ściany sześcianu jest równe 4. Objętość tego sześcianu jest równa Treść dostępna po opłaceniu abonamentu. Zadanie 20. (1 pkt). Tworząca stożka ma długość 4 i jest nachylona do płaszczyzny podstawy pod kątem 45°. Wysokość tego stożka jest równa \[ 2\]\[ \[ 2\] \[ Treść dostępna po opłaceniu abonamentu. Zadanie 21. (1 pkt). Wskaż równanie prostej równoległej do prostej o równaniu 3x-6y+7=0 . \[ = \frac{1}{2}x\]\[ = – \frac{1}{2}x\]\[ = 2x\]\[ = – 2x\] Treść dostępna po opłaceniu abonamentu. Zadanie 22. (1 pkt). Punkt A ma współrzędne (5,2012). Punkt B jest symetryczny do punktu A względem osi Ox, a punkt C jest symetryczny do punktu B względem osi Oy. Punkt C ma współrzędne A. (-5,-2012) B. (-2012,-5)C. (-5, 2012)D. (-2012,5) Treść dostępna po opłaceniu abonamentu. Zadanie 23. (1 pkt). Na okręgu o równaniu \({\left( {x – 2} \right)^2} + {\left( {y + 7} \right)^2} = 4\) leży punkt A. A = (-2,5) B. B = (2,-5) C. C = (2,-7)D. D = (7,-2) Treść dostępna po opłaceniu abonamentu. Zadanie 24. (1 pkt). Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne mają być tego samego koloru, a pas znajdujący się między nimi ma być innego koloru. Liczba różnych takich flag, które można uszyć, mając do dyspozycji tkaniny w 10 kolorach, jest równa Treść dostępna po opłaceniu abonamentu. Zadanie 25. (1 pkt). Średnia arytmetyczna cen sześciu akcji na giełdzie jest równa 500 zł. Za pięć z tych akcji zapłacono 2300 zł. Cena szóstej akcji jest równa A. 400 złB. 500 złC. 600 złD. 700 zł Treść dostępna po opłaceniu abonamentu. Zadanie 26. (2 pkt). Rozwiąż nierówność \({x^2} + 8x + 15 > 0\) Treść dostępna po opłaceniu abonamentu. Zadanie 27. (2 pkt). Uzasadnij, że jeśli liczby rzeczywiste a, b, c spełniają nierówności 0 \frac{{a + b}}{2}\] Treść dostępna po opłaceniu abonamentu. Zadanie 28. (2 pkt). Liczby \({x_1} = – 4\) i \({x_2} = 3\) są pierwiastkami wielomianu \(W\left( x \right) = {x^3} + 4{x^2} – 9x – 36\). Oblicz trzeci pierwiastek tego wielomianu. Treść dostępna po opłaceniu abonamentu. Zadanie 29. (2 pkt). Wyznacz równanie symetralnej odcinka o końcach A=(-2,2) i B=(2,10). Treść dostępna po opłaceniu abonamentu. Zadanie 30. (2 pkt). W trójkącie ABC poprowadzono dwusieczne kątów A i B. Dwusieczne te przecinają się w punkcie P. Uzasadnij, że kąt APB jest rozwarty. Treść dostępna po opłaceniu abonamentu. Zadanie 31. (2 pkt). Ze zbioru liczb {1,2,3,4,5,6,7} losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A, polegającego na wylosowaniu liczb, których iloczyn jest podzielny przez 6. Treść dostępna po opłaceniu abonamentu. Zadanie 32. (4 pkt). Ciąg (9, x,19) jest arytmetyczny, a ciąg (x, 42, y, z) jest geometryczny. Oblicz x, y oraz z. Treść dostępna po opłaceniu abonamentu. Zadanie 33. (4 pkt). W graniastosłupie prawidłowym czworokątnym ABCDEFGH przekątna AC podstawy ma długość 4. Kąt ACE jest równy 60° . Oblicz objętość ostrosłupa ABCDE przedstawionego na poniższym rysunku. Treść dostępna po opłaceniu abonamentu. Zadanie 34. (5 pkt). Miasto A i miasto B łączy linia kolejowa długości 210 km. Średnia prędkość pociągu pospiesznego na tej trasie jest o 24 km/h większa od średniej prędkości pociągu osobowego. Pociąg pospieszny pokonuje tę trasę o 1 godzinę krócej niż pociąg osobowy. Oblicz czas pokonania tej drogi przez pociąg pospieszny. Treść dostępna po opłaceniu abonamentu. Matura z matematyki – Spis treści Matura z matematyki 2017 – Maj podstawowa Matura z matematyki 2016 – Maj podstawowa Matura z matematyki 2015 – Maj podstawowa Próbna matura z matematyki 2015 – CKE podstawowa Przykładowa matura z matematyki 2015 CKE Matura z matematyki 2014 – Maj podstawowa Matura z matematyki 2013 – Maj podstawowa Matura z matematyki 2013 – Czerwiec podstawowa Matura z matematyki 2012 – Maj podstawowa Matura z matematyki 2012 – Czerwiec podstawowa Matura z matematyki 2012 – Sierpień podstawowa Matura z matematyki 2011 – Maj podstawowa Matura z matematyki 2010 – Maj podstawowa Matura z matematyki 2009 – Maj podstawowa Matura z matematyki 2008 – Maj podstawowa Matura z matematyki 2007 – Maj podstawowa Matura z matematyki 2006 – Maj podstawowa Matura z matematyki 2005 – Maj podstawowa Matura z matematyki 2003 – Maj podstawowa Bądź na bieżąco z Strona głównaZadania maturalne z biologiiMatura Maj 2012, Poziom rozszerzony (Formuła 2007) Kategoria: Ekspresja informacji genetycznej Typ: Zamknięte (np. testowe, prawda/fałsz) Podaj/wymień Na schemacie przedstawiono proces translacji. Na podstawie analizy schematu i własnej wiedzy wykonaj poniższe polecenia. a)Oceń prawdziwość zdań dotyczących procesu translacji. Wpisz w odpowiednich miejscach tabeli literę P, jeśli zdanie jest prawdziwe, lub literę F, jeśli zdanie jest fałszywe. P/F 1. Każdy tRNA posiada wolny koniec, do którego przyłączany jest aminokwas. 2. Kolejność kodonów na mRNA decyduje o kolejności aminokwasów w wytwarzanym białku. 3. Proces translacji zachodzi w jądrze komórkowym. b)Podaj zestawienie nukleotydów w antykodonie tRNA przenoszącym tyrozynę (Tyr). c)Podaj znaczenie obecności porów w otoczce jądrowej dla procesu translacji. Rozwiązanie a)(0−1)Poprawna odpowiedź: 1 – P, 2 – P, 3 – F 1 p. – za poprawną ocenę wszystkich (trzech) informacji 0 p. – za niepoprawną ocenę jednej lub dwóch, lub wszystkich informacji b)(0−1)Poprawna odpowiedź: antykodon: AUG lub GUA 1 p. – za poprawne podanie zestawienia nukleotydów w antykodonie tRNA przenoszącym tyrozynę 0 p. – za odpowiedź niepoprawną c)(0−1)Przykład poprawnej odpowiedzi: Poprzez pory w błonie jądrowej przedostają się do cytoplazmy podjednostki rybosomów oraz kwasy rybonukleinowe biorące udział w translacji (mRNA, tRNA). 1 p. – za poprawne wyjaśnienie znaczenia porów w otoczce jądrowej 0 p. – za odpowiedź niepoprawną, np. odnoszącą się do rRNA Trójkąty prostokątne równoramienne \( ABC \) i \( CDE \) są położone tak, jak na poniższym rysunku (w obu trójkątach kąt przy wierzchołku \(C\) jest prosty). Wykaż, że \( |AD|=|BE| \). A B C D E Oznaczmy kąt \( ACD \) jako \(\alpha\), kąt \(DCB\) jako \(\beta\) i kąt \(BCE\) jako \(\gamma\). A B C D E α γ β Zauważamy, że kąt \(\alpha\) to różnica kątów \( ACB\) i \(DCB\). Z treści zadania wiemy, że kąt \(ACB\) to kąt prosty, a kąt \(DCB\) określiliśmy jako \(\beta\). Zatem kąt \(\alpha=90^\circ-\beta\). Podobnie kąt \(\gamma\) to różnica kątów \( DCE\) i \(DCB\). Z treści zadania wiemy, że kąt \(DCE\) to kąt prosty, a kąt \(DCB\) określiliśmy jako \(\beta\). Zatem kąt \(\gamma=90^\circ-\beta\). Pokazaliśmy, że kąty \(\alpha\) i \(\gamma\) mają taką samą miarę. Zaznaczmy zatem na rysunku \(\gamma\) jako \(\alpha\). Jako że trójkąt \( ABC \) jest trójkątem równoramiennym z kątem prostym przy wierzchołku \(C\), to boki \(AC\) i \(CB\) są ramionami. Oznaczmy ich długość jako \(x\). Podobnie sytuacja się ma w trójkącie \( CDE \) - jako że trójkąt \( CDE \) jest trójkątem równoramiennym z kątem prostym przy wierzchołku \(C\), to boki \(DC\) i \(EC\) są ramionami. Oznaczmy ich długość jako \(y\). Dodatkowo zaznaczmy na rysunku trójkąty \(ACD\) (na rysunku na pomarańczowo) i \(BCD\) (na niebiesko). A B C D E x x a a y y Widzimy, że w obu trójkątach mamy boki długości \(x\) i \(y\), oraz kąt \(\alpha\) pomiędzy nimi. Są to zatem trójkąty przystające. W takim razie trzeci bok w obu trójkątach musi mieć taką samą długość, czyli \( |AD|=|BE| \). Drukuj

matura maj 2012 zad 28